(해당 포스트에서 소개하는 "딥러닝과 바둑" 책은 한빛미디어로부터 제공받았음을 알려드립니다.) 인공지능이 바둑 영역에서 본격적으로 활용되기 시작한 것은 4년전 알파고와 실제 인간과의 대결 이후였을 것이다. 그 이전에는 인공지능이 체스에 활용된 케이스가 있었지만, 제한된 영역에서 움직이는 체스와는 다르게 바둑에서는 활동 영역도 넓고, 무엇보다도 형세를 이해하고 몇수 뒤의 미래를 예측해야했기 때문에, 인공지능을 해결하기 어려운 분야라고 여겨졌었다. 그런 영역을 알파고는 머신러닝과 딥러닝, 더불어 강화학습까지 적용시켜 바둑 실력을 높이게 된 것이다. 혹시 이 영역에 관심있는 사람이라면 Deepmind에서 만든 알파고 관련 영화도 한번 보면 흥미가 있을것이다. 아무튼 알파고가 등장하고, 이를 어떻게 구현했는지에..
보통 아기들이 처음 태어나서 무엇을 할까? 잘 살펴보면 뒤집기, 앉기, 기어가기, 일어서기 까지 일련의 과정을 거친다. 옆에서 지켜보면 그 과정들이 조금 힘겨워 보일 때가 있다. 그런 동작 자체가 아기가 처음 세상 나오면서 처음 경험하는 행동이기 때문에 아기는 주변 사람들이 하는 동작을 보고 따라하려고 노력한다. 우선 아기가 그 동작을 보는 순간 우선 시도를 해볼 것이다. 당연히 처음 해보는 동작인만큼, 그 동작이 정답이 아닐 것이고, 뭔가 잘못된 자세가 나오게 된다. 이때 반복적으로 잘못된 동작을 고치기 위해서 노력할 것이고, 계속 연습을 하게 된다. 결국 동작을 하게 될 것이고, 그때부터는 다양한 주변환경에 대해서도 적응하는 과정도 포함이 될 것이다. 가령 일어서기 과정에서도 '뭔가를 짚고' 일어서는..
O`reilly 사에 뉴스레터를 신청하면 가끔 신규 책을 준다면서 설문조사를 요청할 때가 있다. 그때 받은 책중 하나가 바로 이거였다. 사실 내가 선택할 수 있는 책중 가장 관심있는 분야여서 선택한 것도 있지만, 책에 담겨져 있는 이론적인 내용이나 실무적인 내용에 대한 설명이 굉장히 잘 되어 있었다. 알고보니 현재도 amazon에서는 Natural Language Processing 분야에서 Best Seller 1위에 랭크되어 있었다. 방대한 량만큼이나 최근의 트랜드를 잘 담고 있던 책이라 언제쯤 한국에 번역되려나 싶었는데, 원서가 출시된지 거의 1년만에 번역서로 출시되었다. 이 책에 대한 리뷰를 간단히 해보고자 한다. 항상 내가 갈구하고 바랬던 머신러닝 관련 책들은 수식이나 원리에 대한 설명이 잘되어..
- Total
- Today
- Yesterday
- Offline RL
- arduino
- DepthStream
- bias
- ai
- End-To-End
- reward
- 한빛미디어
- Expression Blend 4
- 파이썬
- RL
- Off-policy
- Variance
- TensorFlow Lite
- Kinect
- windows 8
- SketchFlow
- ColorStream
- processing
- Policy Gradient
- Gan
- Pipeline
- PowerPoint
- Windows Phone 7
- Distribution
- Kinect SDK
- dynamic programming
- 딥러닝
- 강화학습
- Kinect for windows
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |