티스토리 뷰
- Playing Atari with Deep Reinforcement Learning (Mnih et al, 2013) : 링크
- Hybrid Reward Architecture for Reinforcement Learning (van Seijen et al, 2017) : 링크
- Emergence of Locomotion Behaviors in Rich Enviornments (Heess et al, 2017) : 링크
- Mastering the game of Go without human knowledge (Silver et al, 2017) : 링크
'Study > AI' 카테고리의 다른 글
[RL] Q-learning (0) | 2018.05.27 |
---|---|
[RL] Markov Decision Process (MDP) (2) | 2018.05.27 |
[RL] The Bellman Equation (4) | 2018.05.24 |
[RL] Elements of Reinforcement Learning (2) | 2018.05.21 |
[RL] Reinforcement Learning (0) | 2018.05.20 |
[DL] Convolution의 정의 (13) | 2018.05.15 |
[DL] Convolutional Neural Network이란? (0) | 2018.05.14 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- SketchFlow
- Gan
- DepthStream
- bias
- PowerPoint
- Offline RL
- 인공지능
- dynamic programming
- 강화학습
- Pipeline
- TensorFlow Lite
- Kinect
- Variance
- arduino
- reward
- Off-policy
- ColorStream
- processing
- 한빛미디어
- windows 8
- 딥러닝
- Expression Blend 4
- Windows Phone 7
- Distribution
- End-To-End
- RL
- Policy Gradient
- Kinect for windows
- Kinect SDK
- 파이썬
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함