[RL] Meta Reinforcement Learning
(해당 글은 OpenAI Engineer인 Lilian Weng의 포스트 내용을 원저자 동의하에 번역한 내용입니다.) Meta Reinforcement Learning Meta-RL is meta-learning on reinforcement learning tasks. After trained over a distribution of tasks, the agent is able to solve a new task by developing a new RL algorithm with its internal activity dynamics. This post starts with the origin of meta-RL an lilianweng.github.io Meta-RL은 강화학습 task에 meta l..
Study/AI
2019. 11. 14. 14:29
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- 한빛미디어
- 파이썬
- 딥러닝
- Pipeline
- arduino
- End-To-End
- ai
- Kinect SDK
- windows 8
- PowerPoint
- Kinect
- Policy Gradient
- DepthStream
- Variance
- 강화학습
- Gan
- RL
- Offline RL
- Windows Phone 7
- Kinect for windows
- Expression Blend 4
- Distribution
- SketchFlow
- processing
- reward
- Off-policy
- dynamic programming
- bias
- TensorFlow Lite
- ColorStream
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
글 보관함