[MLY] end-to-end 학습의 장단점
이전 예와 동일한 음성 파이프라인을 고려해보자.위의 파이프라인의 대부분 요소들은 "수동적으로 조절되어야 한다(hand-engineered): - MFCC는 일종의 수동적으로 생성되는 음성 특징의 집합체이다. 비록 이 정보들이 음성 입력으로부터 의미있는 정보를 제공하기는 하나, 한편으로는 몇몇 정보를 제거함으로 인해서 입력 데이터를 단순화시킬 수도 있다. - 음소는 언어학자들이 만들어낸 발명품과 같다. 사실 이것들은 음성 상에서 약간 불완전한 요소이기도 하다. 음소가 실제 음성을 근사하기에게 부족한 부분이 있기에, 이를 알고리즘에 반영하면 실제 음성 시스템의 성능을 제한시킬 수도 있다. 이런 수동적인 요소들이 시스템의 잠재적인 성능을 제한시킬 수 있다. 하지만 이런 수동적인 요소들도 몇몇 장점을 가지고 있..
Study/AI
2018. 10. 12. 09:43
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- TensorFlow Lite
- End-To-End
- dynamic programming
- 강화학습
- Variance
- Windows Phone 7
- RL
- reward
- DepthStream
- Expression Blend 4
- Kinect
- Kinect SDK
- Distribution
- processing
- Offline RL
- SketchFlow
- ColorStream
- Pipeline
- 딥러닝
- 파이썬
- PowerPoint
- Kinect for windows
- Policy Gradient
- 한빛미디어
- bias
- windows 8
- Off-policy
- Gan
- ai
- arduino
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함