보통 딥러닝에서 Model의 size를 줄이거나 동작 속도를 향상시키기 위해서 수행하는 Optimization 기법으로 크게 3가지 방법을 드는데, accuracy 측면에서 약간 손해보면서 Model Size를 줄이는 Quantization, training시 필요한 metadata나 Operation을 안쓰게끔 하는 Freezing, 그리고 Layer의 복잡성을 줄이기 위해서 여러 Operation을 하나의 Operation으로 바꾸는 Fusion 등이 있다. Quantization Quantization은 Model을 구성하는 weight이나 bias들이 과연 몇 bit으로 표현하느냐와 연관된 내용이다. 물론 정확성 측면에서는 각 weight와 bias들이 소수점 자리까지 정확히 update하고 계산..
이전 포스트에서도 계속 언급했다시피, 딥러닝 모델을 모바일이나 임베디드 환경에서 그대로 돌리기 어려운 이유는 일반 PC와 달리 메모리나 성능, 저장공간 등의 제한이 있기 때문이다. 이 때문에 해당 모델을 어떻게 최적화(Optimization)하느냐가 임베디드 환경상에서도 최적의 성능을 낼지 여부를 결정하는 요소가 된다. Tensorflow Lite도 결국은 Model deploy시 이 최적화를 해주는 기능이 포함되어 있는 것인데, 이 때 Quantization이 적용된다.치ㅑ Quantization은 간단히 말해서 Neural Network의 내부 구성이나 표현되는 형식을 줄이는 과정을 말한다. 예를 들어서 현재 구성된 Neural Network의 weight이나 activation output이 32b..
- Total
- Today
- Yesterday
- Variance
- Gan
- 파이썬
- SketchFlow
- End-To-End
- processing
- Kinect for windows
- 강화학습
- DepthStream
- Offline RL
- RL
- Policy Gradient
- Distribution
- TensorFlow Lite
- Kinect
- 한빛미디어
- Off-policy
- Pipeline
- 딥러닝
- reward
- bias
- Expression Blend 4
- dynamic programming
- ai
- Windows Phone 7
- ColorStream
- PowerPoint
- windows 8
- arduino
- Kinect SDK
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |