만약 이전과 같이 당신이 만든 고양이 감별기의 학습 데이터로써 10000개 정도의 유저가 업로드한 이미지를 포함하고 있다고 가정하자. 이 데이터는 별도로 분리된 개발/테스트 데이터와 같이 같은 분포를 띄고 있으며, 잘 동작하는 여부를 결정하는 분포를 나타내고 있다. 추가로 인터넷으로부터 다운로드받은 20000개 이미지가 있다. 그러면 알고리즘에 대한 학습 데이터로 20000+10000=30000개의 이미지를 모두 사용해야 할까, 아니면 알고리즘에 외부 영향을 주는 것을 막기 위해 20000개의 인터넷 이미지는 배제하는 것이 좋을까? (간단한 linear classifier로 구성된, 손으로 직접 만든 영상 처리와 같은) 초창기에 나왔던 학습 알고리즘을 쓸 때에는 이렇게 다른 데이터를 합쳐서 사용할 경우 ..
만약 만든 알고리즘이 high variance에 의해서 어려움을 겪고 있다면, 아래의 방법을 고려해봐라: - 학습 데이터를 추가할 것 : 이 방법은 만약 당신이 데이터에 대해서 많이 접근할 수 있고, 이를 처리할 연산 능력이 충분한 한, Variance 문제를 해결할 수 있는 가장 간단하고 신뢰할 만한 방법이다. - 정규화 방법을 적용해볼 것 (L2 regularization, L1 regularization, dropout) : 이 방법은 variance를 줄여주지만, bias를 높이는 부작용이 있다. - Early Stopping을 적용해볼 것 (예를 들어 개발 데이터 오류에 기반해서 gradient descent를 빨리 멈추게 한다던지...) : 이 방법은 variance를 줄여주지만 bias를 높..
* 여기에 담긴 내용은 Udemy에서 진행되는 DeepLearning A-Z(https://www.udemy.com/deeplearning)의 일부를 발췌했습니다. 지난 포스트까지 했던 작업은 Artificial Neural Network의 토대를 잡고 그 안에 들어갈 Layer의 정의, 특히 1개의 Input Layer와 2개의 Hidden Layer, 그리고 마지막 output Layer를 만들고 각각에 적용할 Activation function까지 정의했다. 이제 만들어진 Layer를 ANN로 묶어서 처리하는 과정이 필요하다. Keras에서는 이 과정을 compile이라고 말하는 것 같다. compile 함수의 인자로는 다음 내용이 들어간다. 여기서 필요한 인자는 optimizer, loss, me..
- Total
- Today
- Yesterday
- dynamic programming
- processing
- Pipeline
- 딥러닝
- bias
- RL
- ai
- windows 8
- Variance
- Gan
- arduino
- Off-policy
- PowerPoint
- Distribution
- ColorStream
- TensorFlow Lite
- SketchFlow
- Kinect for windows
- Kinect SDK
- Kinect
- Windows Phone 7
- 파이썬
- reward
- Offline RL
- Expression Blend 4
- End-To-End
- Policy Gradient
- 한빛미디어
- DepthStream
- 강화학습
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |