![](http://i1.daumcdn.net/thumb/C148x148/?fname=https://blog.kakaocdn.net/dn/qYbci/btq2y2WZo4y/mmWiiRho1E2PNOQCx7MJYk/img.png)
요새 듣고 있는 강의 중 하나가 MIT에서 강의하는 "Machine Learning for Healthcare"라는 것인데, 이 강의에서는 다양한 의학데이터(텍스트, 영상 등)을 활용해서 머신러닝/딥러닝 모델을 만드는 것을 다루고 있다. 단순히 모델을 만드는 코딩 스킬보다도 의학 데이터에 내재된 어려움과 이를 해결하기 위한 전처리 기법, 생각해볼만한 통계적 기법 등을 다루고 있어서, 재미있게 듣고 있다. 사실 의학쪽으로 domain expert가 아닌 이상에야 해당 데이터를 다룰 일은 없겠지만, 내가 잘 알지 못하는 분야에서 어떻게 활용되는지를 배우고 나면, 또다른 새로운 분야에 접목시킬 때는 어떻게 고민해봐야 할지 감이 올 것 같아서 듣는 이유가 있다. Machine Learning for Health..
Study/AI
2021. 4. 14. 17:52
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- bias
- ColorStream
- Gan
- dynamic programming
- PowerPoint
- DepthStream
- reward
- processing
- Offline RL
- Off-policy
- Kinect for windows
- RL
- Variance
- arduino
- 파이썬
- Distribution
- windows 8
- Windows Phone 7
- 한빛미디어
- TensorFlow Lite
- 강화학습
- Policy Gradient
- SketchFlow
- Pipeline
- 딥러닝
- Kinect
- End-To-End
- Kinect SDK
- ai
- Expression Blend 4
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함