(논문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction - Kumar et al, NeurIPS 2019 (논문, 코드) 요약 Off-policy RL은 샘플링 관점에서 효율적인 학습을 위해서 다른 policy (behavior policy)로부터 수집한 데이터로부터 경험을 배우는데 초점을 맞추지만, Q-learning이나 Actor-Critic 기반의 off-policy Approximate dynamic programming 기법은 학습시 사용된 데이터와 실제 데이터간의 분포가 다른 문제로 인해서 on-policy data를 추가로 활용하지 않고서는 성능을 개선하기가 어..
(해당 글은 U.C. Berkeley 박사과정에 재학중인 Daniel Seita가 작성한 포스트 내용을 원저자 동의하에 번역한 내용입니다) Offline (Batch) Reinforcement Learning: A Review of Literature and Applications Reinforcement learning is a promising technique for learning how to perform tasks through trial and error, with an appropriate balance of exploration and exploitation. Offline Reinforcement Learning, also known as Batch Reinforcement Learni..
- Total
- Today
- Yesterday
- Pipeline
- Offline RL
- Policy Gradient
- windows 8
- Kinect
- bias
- 파이썬
- Kinect for windows
- PowerPoint
- 강화학습
- 한빛미디어
- ai
- Distribution
- SketchFlow
- Variance
- Off-policy
- TensorFlow Lite
- DepthStream
- dynamic programming
- End-To-End
- Windows Phone 7
- arduino
- Gan
- Kinect SDK
- 딥러닝
- reward
- RL
- ColorStream
- Expression Blend 4
- processing
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |