본문 바로가기 메뉴 바로가기

자신에 대한 고찰

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

자신에 대한 고찰

검색하기 폼
  • 분류 전체보기 (1094)
    • Me (67)
    • Things (69)
    • Study (437)
      • SW (2)
      • Linux (36)
      • OS (49)
      • Circuit (6)
      • Architecture (36)
      • Compiler (23)
      • EmbeddedSystem (30)
      • Network (8)
      • AI (180)
      • Algorithm (4)
      • comm (4)
      • Work (6)
      • MOOC (44)
    • PC (24)
    • Arduino (36)
    • RPi (15)
    • Office (30)
    • Kinect (75)
    • OpenCV (42)
    • WindowsPhone (40)
    • Windows 8 (37)
    • Processing (25)
    • Expression (37)
      • SketchFlow (18)
    • Hobby (159)
      • Guitar (9)
      • Game (13)
      • Book (115)
      • Code (16)
  • 방명록

supervised (1)
[RL] Make It Happen

만약 최신 해킹과 관련된 뉴스를 읽어보았다면, Deep Reinforcement Learning(심층 강화학습)으로 모든 문제를 풀 수 있을거라고 생각할 것이다. Deep RL을 통해서 바둑에서는 인간을 뛰어넘는 성능을 보여주기도 하고, Atari 게임을 깨기도 하며, 복잡한 로봇 시스템을 조종할 수도 있고, 딥러닝 시스템의 계수들을 자동적으로 튜닝해주기도 하며, network stack 속의 Queue를 관리하기도 하고, 심지어는 데이터 센터의 에너지 효율성을 증대시켜주기도 한다. 정말로 기적과 같은 기술이지 않은가? 하지만 나는 이렇게 성과가 언론에 의해서 대담하게 뿌려지는 것에 대해 의구심을 가지고 있고, 더더욱이나 다른 연구자들이 이런 성과에 대한 재현에 궁금함을 표할 때 의구심을 더 많이 가진다..

Study/AI 2019. 2. 14. 00:30
이전 1 다음
이전 다음
공지사항
  • 2015년은 조금더 열심히 해보려고 합니다.
  • [2014.04.10] 드리는 말씀
  • [Notice] 블로그에 오신 분들께 드리는 ⋯
  • [Public] Profile - update⋯
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
  • chans_jupyter
TAG
  • Windows Phone 7
  • 파이썬
  • RL
  • Distribution
  • TensorFlow Lite
  • Variance
  • 강화학습
  • Gan
  • arduino
  • 한빛미디어
  • reward
  • End-To-End
  • dynamic programming
  • Kinect SDK
  • windows 8
  • Kinect for windows
  • bias
  • 딥러닝
  • Expression Blend 4
  • processing
  • Policy Gradient
  • ColorStream
  • Off-policy
  • DepthStream
  • PowerPoint
  • Offline RL
  • 인공지능
  • Kinect
  • SketchFlow
  • Pipeline
more
«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바