본문 바로가기 메뉴 바로가기

자신에 대한 고찰

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

자신에 대한 고찰

검색하기 폼
  • 분류 전체보기 (1094)
    • Me (67)
    • Things (69)
    • Study (437)
      • SW (2)
      • Linux (36)
      • OS (49)
      • Circuit (6)
      • Architecture (36)
      • Compiler (23)
      • EmbeddedSystem (30)
      • Network (8)
      • AI (180)
      • Algorithm (4)
      • comm (4)
      • Work (6)
      • MOOC (44)
    • PC (24)
    • Arduino (36)
    • RPi (15)
    • Office (30)
    • Kinect (75)
    • OpenCV (42)
    • WindowsPhone (40)
    • Windows 8 (37)
    • Processing (25)
    • Expression (37)
      • SketchFlow (18)
    • Hobby (159)
      • Guitar (9)
      • Game (13)
      • Book (115)
      • Code (16)
  • 방명록

margin (1)
[RL] The Linearization Principle

나는 머신러닝으로 문제를 푸는데 있어 "Linearization Principle"이라고 부르는 기조를 유지한다. 이 원칙에는 많은 다양성들이 존재하지만, 간단하게 말하자면, "만얀 머신러닝 알고리즘이 실제 선형모델로 제한된 상태에서 예상치 못한 소위 미친 짓을 한다면, 복잡한 비선형 모델에서도 마찬가지로 미친 짓을 할 것이다"라는 것이다. 이 Linearization Principle은 머신러닝상에서의 복잡한 문제를 다루기 쉽고 간단한 문제로 분해시켜주고 해결할 간편한 방법을 제공한다. 물론 머신 러닝을 이해하는 있어 선형 모델을 활용한 문제가 충분하다고는 생각하지 않지만, 그래도 널리 활용할 수 있는 방법이라는 데에는 논의할 필요가 있다고 생각한다. 같은 방법으로 2-SAT 문제를 해결하는 것이 P=..

Study/AI 2019. 2. 19. 19:39
이전 1 다음
이전 다음
공지사항
  • 2015년은 조금더 열심히 해보려고 합니다.
  • [2014.04.10] 드리는 말씀
  • [Notice] 블로그에 오신 분들께 드리는 ⋯
  • [Public] Profile - update⋯
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
  • chans_jupyter
TAG
  • End-To-End
  • Kinect
  • 한빛미디어
  • Expression Blend 4
  • Gan
  • ColorStream
  • Policy Gradient
  • bias
  • Kinect SDK
  • Pipeline
  • 강화학습
  • 딥러닝
  • TensorFlow Lite
  • Variance
  • dynamic programming
  • Offline RL
  • DepthStream
  • arduino
  • Distribution
  • Kinect for windows
  • 인공지능
  • RL
  • Windows Phone 7
  • PowerPoint
  • reward
  • SketchFlow
  • processing
  • windows 8
  • Off-policy
  • 파이썬
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바