강화학습의 본질은 시간대별로 dynamic하게 변하는 시스템의 미래를 형상화하는데 이전의 데이터를 활용하는 것이다. 강화학습의 가장 흔한 예가 episodic model을 따르는 것인데, 이는 특정 단위의 action이 정의되고, 시스템 상에서 테스트되었고, 특정 단위의 reward와 state가 관찰되고, 이런 이전의 action과 reward, state 정보들이 결합되어 행동을 결정하는 policy를 향상시키는데 사용되는 것이다. 시스템과 상호반응하는 것 자체가 매우 고급지고 복잡한 모델이기도 하고, 일반적인 확률적인 최적화 방식에 비하면 조금 더 복잡하다고 고려되기도 한다. 미래의 성능을 향상시키기 위해서 수집된 데이터 모두를 잘 활용하는 방법이 있을까? policy gradient나 random..
앞에서 다뤘던 두개 포스트에서는 강화학습에서 현재 진행되고 있는 연구 중 2개의 흐름에 대해서 소개했다. 첫번째는 prescriptive analytics에서 바라본 강화학습이었고, 두번째는 optimal control에 대한 내용이었다. 이번 포스트에서는 앞과 다르게 현업이나 논문 상에서 사람들이 강화학습을 어떻게 사용하는지에 대해 초점을 맞춰보고자 한다. 강화학습은 수사학(rhetoric)과는 조금 다른 측면이 있어서 각각의 다른 방법론과 알고리즘의 한계를 쉽게 이해시키고자 2개의 포스트에 나눠서 설명하려고 한다. 지금까지 지속되고 전례에 의해서 간신히 유지되어 오던 규칙들이 몇가지 있는데, 그 규칙에 대해서 윤곽을 그리고, control system 설계와 분석에서 연구가 진행되고 있는 그 연관성을..
- Total
- Today
- Yesterday
- Windows Phone 7
- Pipeline
- arduino
- 파이썬
- Distribution
- Offline RL
- Kinect SDK
- 한빛미디어
- Kinect for windows
- ColorStream
- processing
- Expression Blend 4
- Kinect
- 딥러닝
- Gan
- PowerPoint
- End-To-End
- Off-policy
- ai
- dynamic programming
- TensorFlow Lite
- DepthStream
- bias
- windows 8
- 강화학습
- reward
- RL
- SketchFlow
- Policy Gradient
- Variance
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |