학습 알고리즘에서 오류 평가를 수행하는 것은 다음 개선할 사항을 파악하기 위해서 머신러닝 시스템의 문제를 평가하는데 데이터 과학을 사용하는 것과 같다. 핵심은, 요소별 오류 평가는 어떤 요소가 개선에 있어서 큰 영향을 주는지를 알려준다는 것이다. 웹사이트 상에서 고객이 물건을 사는 것에 대한 데이터가 있다고 가정해보자. 데이터 과학자는 해당 데이터를 분석하는데 다양한 방법을 사용할 수 있을 것이다. 그래서 웹사이트 상에서 가격을 올려야 할지, 혹은 서로 다른 마케팅 활동을 통해서 얻을 수 있는 고객의 영속적인 가치(lifetime value)에 대한 결정을 내릴 수 있을 것이다. 데이터를 평가하는데 있어 "올바른" 길이라는 것은 없고, 적용해볼만한 가치가 있는 방법들이 많이 있다. 이와 비슷하게 오류 평..
Study/AI
2018. 10. 16. 19:21
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- Expression Blend 4
- reward
- 강화학습
- Windows Phone 7
- Gan
- SketchFlow
- Kinect
- processing
- Distribution
- ai
- Kinect SDK
- arduino
- Variance
- Offline RL
- ColorStream
- DepthStream
- Policy Gradient
- Kinect for windows
- 한빛미디어
- PowerPoint
- bias
- 딥러닝
- windows 8
- 파이썬
- Pipeline
- End-To-End
- TensorFlow Lite
- Off-policy
- RL
- dynamic programming
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
글 보관함