본문 바로가기 메뉴 바로가기

자신에 대한 고찰

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

자신에 대한 고찰

검색하기 폼
  • 분류 전체보기 (1094)
    • Me (67)
    • Things (69)
    • Study (437)
      • SW (2)
      • Linux (36)
      • OS (49)
      • Circuit (6)
      • Architecture (36)
      • Compiler (23)
      • EmbeddedSystem (30)
      • Network (8)
      • AI (180)
      • Algorithm (4)
      • comm (4)
      • Work (6)
      • MOOC (44)
    • PC (24)
    • Arduino (36)
    • RPi (15)
    • Office (30)
    • Kinect (75)
    • OpenCV (42)
    • WindowsPhone (40)
    • Windows 8 (37)
    • Processing (25)
    • Expression (37)
      • SketchFlow (18)
    • Hobby (159)
      • Guitar (9)
      • Game (13)
      • Book (115)
      • Code (16)
  • 방명록

expectation (2)
[RL] Expected SARSA

(해당 포스트는 Coursera의 Sample-based Learning Methods의 강의 요약본입니다) 이전 포스트를 통해 배울 수 있었던 것은 크게 다음과 같다. Episode가 끝나야 Value function을 update할 수 있었던 Monte Carlo Method와 다르게 TD Learning은 BootStrapping 기법을 사용해서 Value function을 update할 수 있었다. TD Learning 중에서도 Target Policy와 Behavior Policy의 일치여부에 따라서 On-policy method인 SARSA와 Off-policy method인 Q-learning으로 나눠볼 수 있다. 아무튼 두가지 방법 모두 state action value를 활용한 Bellm..

Study/AI 2019. 9. 18. 19:37
[RL] (Spinning Up) Proof for Don't Let the Past Distract You

(이 글은 OpenAI Spinning Up의 글을 개인적으로 정리한 내용입니다. 원본) Extra Material — Spinning Up documentation Docs » Extra Material Edit on GitHub © Copyright 2018, OpenAI. Revision 97c8c342. Built with Sphinx using a theme provided by Read the Docs. spinningup.openai.com 이번 글에서는 action이 이전에 얻은 reward에 reinforce되서는 안된다는 것을 증명하고 한다. 먼저 simplest policy gradient에서의 식 중 \(R(\tau)\)를 전개해보면 다음과 같다. $$ \begin{align} \n..

Study/AI 2019. 5. 23. 04:47
이전 1 다음
이전 다음
공지사항
  • 2015년은 조금더 열심히 해보려고 합니다.
  • [2014.04.10] 드리는 말씀
  • [Notice] 블로그에 오신 분들께 드리는 ⋯
  • [Public] Profile - update⋯
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
  • chans_jupyter
TAG
  • DepthStream
  • arduino
  • RL
  • 인공지능
  • Policy Gradient
  • Offline RL
  • processing
  • 강화학습
  • Kinect SDK
  • 딥러닝
  • 파이썬
  • 한빛미디어
  • SketchFlow
  • TensorFlow Lite
  • Kinect for windows
  • windows 8
  • End-To-End
  • Off-policy
  • Pipeline
  • Gan
  • reward
  • dynamic programming
  • Expression Blend 4
  • Variance
  • PowerPoint
  • bias
  • Distribution
  • ColorStream
  • Windows Phone 7
  • Kinect
more
«   2025/07   »
일 월 화 수 목 금 토
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바