본문 바로가기 메뉴 바로가기

자신에 대한 고찰

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

자신에 대한 고찰

검색하기 폼
  • 분류 전체보기 (1094)
    • Me (67)
    • Things (69)
    • Study (437)
      • SW (2)
      • Linux (36)
      • OS (49)
      • Circuit (6)
      • Architecture (36)
      • Compiler (23)
      • EmbeddedSystem (30)
      • Network (8)
      • AI (180)
      • Algorithm (4)
      • comm (4)
      • Work (6)
      • MOOC (44)
    • PC (24)
    • Arduino (36)
    • RPi (15)
    • Office (30)
    • Kinect (75)
    • OpenCV (42)
    • WindowsPhone (40)
    • Windows 8 (37)
    • Processing (25)
    • Expression (37)
      • SketchFlow (18)
    • Hobby (159)
      • Guitar (9)
      • Game (13)
      • Book (115)
      • Code (16)
  • 방명록

deterministic (1)
[RL] The Bellman Equation

Richard Ernest Bellman이 제안한 Bellman Equation은 이전 포스트에서 잠깐 소개했던 State와 Action, reward(+ discounted value)를 이용해서 특정 값으로 도출하는 공식으로, 강화학습에서 거의 처음으로 나오는 주제이다. 처음 이 공식이 나왔을 때는 복잡한 조건이 담긴 문제에서 해를 구하는 Dynamic Programming의 기법 중 하나로 쓰였었고, 지금에 이르러서는 강화학습에 많이 활용된다. 이 공식이 어떤식으로 이뤄지는지 간단하게 설명해보고자 한다. 보통 강화학습 강좌를 보면 이런 도식판을 많이 보게 된다. 좌측 하단에는 로봇이 하나가 있고, 우측 상단에는 이 로봇이 도달해야 하는 목표가 있다. 그런데 이 목표의 아래에는 장애물도 하나 있고, ..

Study/AI 2018. 5. 24. 00:02
이전 1 다음
이전 다음
공지사항
  • 2015년은 조금더 열심히 해보려고 합니다.
  • [2014.04.10] 드리는 말씀
  • [Notice] 블로그에 오신 분들께 드리는 ⋯
  • [Public] Profile - update⋯
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
  • chans_jupyter
TAG
  • ColorStream
  • Distribution
  • processing
  • Off-policy
  • bias
  • Gan
  • DepthStream
  • End-To-End
  • reward
  • Pipeline
  • dynamic programming
  • Kinect
  • windows 8
  • Windows Phone 7
  • 파이썬
  • 딥러닝
  • 한빛미디어
  • Kinect SDK
  • RL
  • Variance
  • SketchFlow
  • Kinect for windows
  • PowerPoint
  • Policy Gradient
  • TensorFlow Lite
  • Expression Blend 4
  • Offline RL
  • 강화학습
  • arduino
  • 인공지능
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바