본문 바로가기 메뉴 바로가기

자신에 대한 고찰

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

자신에 대한 고찰

검색하기 폼
  • 분류 전체보기 (1094)
    • Me (67)
    • Things (69)
    • Study (437)
      • SW (2)
      • Linux (36)
      • OS (49)
      • Circuit (6)
      • Architecture (36)
      • Compiler (23)
      • EmbeddedSystem (30)
      • Network (8)
      • AI (180)
      • Algorithm (4)
      • comm (4)
      • Work (6)
      • MOOC (44)
    • PC (24)
    • Arduino (36)
    • RPi (15)
    • Office (30)
    • Kinect (75)
    • OpenCV (42)
    • WindowsPhone (40)
    • Windows 8 (37)
    • Processing (25)
    • Expression (37)
      • SketchFlow (18)
    • Hobby (159)
      • Guitar (9)
      • Game (13)
      • Book (115)
      • Code (16)
  • 방명록

consistent data (1)
[MLY] 모순된 데이터를 넣을지 여부를 결정하는 방법

만약 뉴욕시의 집 값을 예측하는 것을 학습시키고 싶다고 가정하자, 집의 크기(입력값 x)가 주어지면, 이를 바탕으로 집 가격(출력값 y)을 예측하길 원할 것이다. 뉴욕시의 집값은 매우 높다. 만약 미시건주의 디트로이트시의 집 값에 대한 정보를 가지고 있는데, 해당 집 값은 뉴욕시의 집값보다 더 낮다고 가정해보자. 이 데이터를 학습 데이터로 포함시킬 수 있을까? 같은 크기의 x가 주어졌을 때, 집 값 y는 해당 집이 뉴욕시에 있냐, 디트로이트시에 있냐에 따라서 매우 다르게 나올 수 있다. 만약 뉴욕시의 집값을 예측하는 것에 대해서만 신경써야 한다면, 위와 같이 두개의 데이터를 사용하게 되면 성능이 안 좋아질 것이다. 이런 경우에는 모순된 디트로이트시의 데이터는 빼버리는 것이 더 낫다. 위와 같은 뉴욕시와 ..

Study/AI 2018. 10. 3. 10:26
이전 1 다음
이전 다음
공지사항
  • 2015년은 조금더 열심히 해보려고 합니다.
  • [2014.04.10] 드리는 말씀
  • [Notice] 블로그에 오신 분들께 드리는 ⋯
  • [Public] Profile - update⋯
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
  • chans_jupyter
TAG
  • Policy Gradient
  • RL
  • Gan
  • Expression Blend 4
  • arduino
  • Kinect SDK
  • reward
  • Kinect for windows
  • Pipeline
  • windows 8
  • ColorStream
  • 강화학습
  • Variance
  • 인공지능
  • 파이썬
  • 딥러닝
  • End-To-End
  • Offline RL
  • TensorFlow Lite
  • SketchFlow
  • PowerPoint
  • Off-policy
  • Distribution
  • Windows Phone 7
  • processing
  • 한빛미디어
  • dynamic programming
  • Kinect
  • DepthStream
  • bias
more
«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바