(해당 포스트에서 소개하고 있는 "비전 시스템을 위한 딥러닝" 책은 한빛 미디어로부터 제공받았음을 알려드립니다.) 비전 시스템을 위한 딥러닝 이 책은 아주 어렵지 않은 수준에서 컴퓨터 비전 시스템에 고급 딥러닝 알고리즘을 어떻게 활용하는지 소개한다. 파이썬 코드를 어느 정도 작성할 수 있는 사람이라면 다양한 딥러닝 기반 알고 hanbit.co.kr 인공지능 기술이 다양한 분야에 적용되고 있다고는 하지만, 가장 많이 드러나있고, 성과로 보여지는 분야는 역시 컴퓨터 비전이 아닐까 싶다. 우리가 눈뜨고 살아가는 이상, 눈으로 들어오는 시각 정보의 양도 어마어마하면서, 뭔가 변화나 결과가 나왔을때 제일 확 와닿기 때문이다. 그래서 아마 대부분의 인공지능 기술 책을 살펴보면 제일 처음 배우는 MLP이후로 바로 나..
보통 Convolution이라고 사전에서 찾아보면 합성이라는 뜻이 많이 나온다. 그래서 CNN을 합성곱 신경망이라고 표현하는 곳이 많다. 왜 이걸 합성이라고 표현했을까? 사실 전자공학을 전공한 사람이라면 신호처리 수업을 들으면서 많이 들어봤겠지만, 그때의 Convolution은 Linear Time Invariant System상에서 이전값과 현재값을 연산하기 위해 주로 사용하던 연산이다. 의미는 그런식으로 담겨져 있었는데, Convolution Neural Network 상에서는 그런 큰 의미보다는 그냥 이미지내에서 feature를 뽑기 위한 용도로 연산을 활용한다. 일반적으로 다음의 케이스에 대해서 Convolution을 취한다. 위와 같이 어떤 입력 이미지가 들어왔을 때, 여기서 Feature를 감..
아마 위 그림들을 본 사람이 많을 것이다. 사람이 보기에 따라서 위의 오른쪽 그림은 할머니로도 보일 수 있고, 어떤 사람은 베일을 쓴 여성이 보일 것이다. 또 왼쪽 그림은 사람보기에 따라서 오리로 볼수도 있고, 토끼라고 볼 수 있다. 사실 사람들이 보는 그림의 의미가 다른 이유는 그림이 머리속에 들어왔을 때 뇌가 그렇게 반응하고, 분류를 했기 때문이다. 이 때 뇌는 해당 그림의 feature(특징)을 뽑아보고 기존에 알고 있던 이미지들의 특징과 비교해보면서 그와 유사한 그림을 선택하게 되는 것이다. 위의 그림들에서도 사람들이 보는 결과가 다 다른 이유는 결국 그렇게 뽑아낸 특징이 모호하기 때문인 것이다. Convolutional Neural Network(CNN)은 기존의 Neural Network에서 ..
- Total
- Today
- Yesterday
- PowerPoint
- dynamic programming
- Kinect SDK
- Offline RL
- bias
- Policy Gradient
- Variance
- End-To-End
- ColorStream
- Kinect
- Windows Phone 7
- TensorFlow Lite
- Kinect for windows
- Expression Blend 4
- RL
- reward
- Pipeline
- Off-policy
- DepthStream
- windows 8
- 강화학습
- arduino
- 파이썬
- 한빛미디어
- SketchFlow
- processing
- Distribution
- Gan
- ai
- 딥러닝
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |