[MLY] 오류 탐지의 일반적인 경우
오류를 탐지(attribution)하는데 있어 몇가지 일반적인 과정이 있다. 만약 사용하고 있는 파이프라인이 3개의 단계 A, B, C로 구성되어 있고, A는 B에 직접적으로 물려있고, B는 C에 직접적으로 물려있는 경우라고 가정해보자. 개발 데이터를 통해서 생길 수 있는 문제에 대해서 처리를 하기 위해서는: 1. A의 출력이 "완벽한" 출력이 되도록 수정해본다.(예를 들어 앞에서 소개한 고양이 이미지에 대한 "완벽한" 박스 이미지) 그리고 해당 출력을 이용해서 파이프라인의 B와 C에서 테스트를 해본다. 만약 알고리즘이 정상적인 결과를 출력한다면 이 말은 A가 좋은 출력을 내보낼 경우, 전체 알고리즘 출력은 정상적으로 나온다는 것을 의미한다. 그렇기 때문에 해당 오류는 A에서 발생한 것이고 탐지할 수 있..
Study/AI
2018. 10. 16. 09:29
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- processing
- RL
- 강화학습
- reward
- Pipeline
- Offline RL
- Policy Gradient
- Distribution
- ColorStream
- bias
- Windows Phone 7
- Off-policy
- Kinect
- 딥러닝
- End-To-End
- dynamic programming
- Gan
- windows 8
- PowerPoint
- 파이썬
- ai
- Kinect for windows
- TensorFlow Lite
- SketchFlow
- DepthStream
- Expression Blend 4
- arduino
- 한빛미디어
- Variance
- Kinect SDK
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
글 보관함