
(해당 포스트에서 소개하고 있는 "안전한 인공지능 시스템을 위한 심층 신경망 강화" 책은 한빛미디어로부터 제공받았음을 알려드립니다.) 우리 삶속을 살펴보면 인공지능 기술들이 접목된 것들이 많이 보인다. 길을 지나가다 봐도, 다 인공지능과 관련 기술들을 선전하고, 사람들은 거기에 매력을 느끼는 것 같다. 문제는 너무 이런 경향이 심해져서, 심지어는 인공지능 기술에 맹신하는 의견들도 있다는 것이다. 위의 예시는 Berkeley BAIR에서 제시한, physical adversarial example의 예시다. 단순하게만 보면 그냥 표지판을 병이라고 잘못 인식한 것이라고 생각할 수 있겠지만, 만약 자율주행을 목적으로 학습된 인공지능 모델이 이런 표지판을 위와 같이 잘못 인식했다면 어떤 결과가 나올까? 대부분이..
Hobby/Book
2020. 12. 15. 00:02
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- ColorStream
- Distribution
- DepthStream
- SketchFlow
- ai
- 파이썬
- bias
- Kinect for windows
- processing
- reward
- Windows Phone 7
- Gan
- 한빛미디어
- windows 8
- Offline RL
- 딥러닝
- Pipeline
- Expression Blend 4
- Off-policy
- Kinect SDK
- dynamic programming
- End-To-End
- Kinect
- 강화학습
- arduino
- Policy Gradient
- TensorFlow Lite
- RL
- Variance
- PowerPoint
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
글 보관함