(본문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Hyperparameter Selection for Offline Reinforcement Learning - Le Paine et al, NeurIPS 2020 Offline RL workshop (논문, 영상) 요약 Offline RL은 실제 환경에 RL 기법들을 적용하기 좋은 방법론이긴 하지만 환경상에서 어떤 policy가 좋은 policy인지 각 hyperparameter에 따라서 평가하는 과정으로 인해 offline 가정이 깨지게 된다. 이렇게 online 상에서 수행하는 과정으로 인해 offline RL을 통해 추구하는 목표가 상대적으로 약화된다. 그래서 이 논문에서는 offline hyperparameter selection,..
(본문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Offline Reinforcement Learning from Algorithms to Practical Challenges - Kumar et al, NeurIPS 2020 Tutorial (사이트, 실습코드) 원래 거진 3시간짜리 tutorial이기 때문에 정리하는데 시간이 걸릴듯 하다. 그래도 전반적인 Offline RL의 문제와 이론에 대해서 잘 설명되어 있어서 차근차근 설명해보고자 한다. 기본적인 RL 내용도 포함되어 있어, Offline RL 부분만 뽑아서 정리한다. Can we develop data-driven RL methods? 보통 강화학습이라고 하면 다음과 같은 환경을 가정하고 진행한다. 일반적으로는 어떤 환경이 주..
(논문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Offline RL without Off-Policy Evaluation - Brandfonbrener et al, NeurIPS 2021 (논문, 코드) 요약 이전에 수행된 대부분의 Offline RL에서는 off-policy evaluation과 관련된 반복적인 Actor-critic 기법을 활용했다. 이 논문에서는 behavior policy의 on-policy Q estimate를 사용해서 제한된/정규화된 policy improvement를 단순히 한번만 수행해도 잘 동작하는 것을 확인했다.이 one-step baseline이 이전에 발표되었던 논문에 비하면 눈에 띌만큼 간단하면서도 hyperparameter에 대해서 robust한..
(논문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction - Kumar et al, NeurIPS 2019 (논문, 코드) 요약 Off-policy RL은 샘플링 관점에서 효율적인 학습을 위해서 다른 policy (behavior policy)로부터 수집한 데이터로부터 경험을 배우는데 초점을 맞추지만, Q-learning이나 Actor-Critic 기반의 off-policy Approximate dynamic programming 기법은 학습시 사용된 데이터와 실제 데이터간의 분포가 다른 문제로 인해서 on-policy data를 추가로 활용하지 않고서는 성능을 개선하기가 어..
(논문의 의도를 가져오되, 개인적인 의견이 담길 수도 있습니다.) Off-Policy Deep Reinforcement Learning without Exploration - Fujimoto et al, ICML 2019 (논문, 코드) 요약 이 논문에서는 이미 모아져있는 고정된 dataset 상에서 강화학습 에이전트를 학습할 수 있는 알고리즘을 소개한다. 보통 강화학습은 exploration을 통해서 insight를 얻어내고, 이에 대한 경험으로 성능을 추출하는 형태로 되어 있지만, 고정된 dataset으로부터 학습하게 되면 exploration을 할 수 없기 때문에 성능을 얻어낼 요소가 부족하다. 이런 종류의 알고리즘을 Offline RL 혹은 Batch RL이라고 표현하고, 사실 이 알고리즘은 be..
(해당 글은 U.C. Berkeley 박사과정에 재학중인 Daniel Seita가 작성한 포스트 내용을 원저자 동의하에 번역한 내용입니다) Offline (Batch) Reinforcement Learning: A Review of Literature and Applications Reinforcement learning is a promising technique for learning how to perform tasks through trial and error, with an appropriate balance of exploration and exploitation. Offline Reinforcement Learning, also known as Batch Reinforcement Learni..
- Total
- Today
- Yesterday
- End-To-End
- RL
- Kinect for windows
- PowerPoint
- Variance
- Policy Gradient
- dynamic programming
- Off-policy
- reward
- Pipeline
- 강화학습
- Gan
- TensorFlow Lite
- ai
- Windows Phone 7
- windows 8
- Kinect
- Expression Blend 4
- DepthStream
- processing
- Kinect SDK
- ColorStream
- 한빛미디어
- arduino
- SketchFlow
- Offline RL
- 딥러닝
- 파이썬
- Distribution
- bias
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |